Memorial Day weekend is meant to be a time to remember those who died while serving our nation. But for a mother named Cindy, that weekend marks a time to remember the death of her son, Scott. He did not die at war. Rather, Scott died in the middle of a Texas lake at the age of 16.

On Memorial Day weekend 2003, Scott and three of his friends borrowed four Sea-Doo personal watercraft (PWC) to ride around the lake, celebrating the end of the school year. It was only a matter of minutes before his friend Corey headed his Sea-Doo toward Scott, who was sitting on his idle craft. Corey instinctively released the throttle to slow the vessel and then attempted to turn away. But Corey’s Sea-Doo would not turn or appropriately slow down, and it struck and fatally injured Scott.

Unfortunately, this accident is not unusual. And while the PWC industry would have the public believe that these small vessels are no more dangerous than other recreational watercraft, in reality PWC operators are injured 8.5 times as often as those operating other motorized watercraft. Despite these staggering statistics, the industry remains poorly regulated, and manufacturers continue to stall any serious progress in improving PWC design.

PWCs are the only recreational watercraft associated with a leading cause of death in recreational boating accidents other than drowning. In 2004, only 25 percent of PWC fatalities were due to drowning; all other deaths were the result of other injuries, many caused by an off-throttle steering (OTS) hazard. Many PWC users die because of injuries caused by blunt force trauma, typically involving a collision with another vessel, a floating object, or a swimmer.

One of the most serious PWC dangers is the possibility of steering loss when either the throttle is released or the vessel is in an off-power position. The PWC design requires the operator to react in a way that is contrary to human nature. When facing an imminent collision, an operator’s natural instinct—especially if he or she is a novice—is to release the throttle in order to reduce speed, and then alter course, instead of engaging the throttle and turning. But these distinctive vessels—with a movable water jet, no rud-
order to control steering, and no brakes—
do not respond the way many operators
expect.6 Counterintuitively, once the
throttle is released, the operator loses
the ability to control the vessel.

The popularity of PWCs—what most
people know as Jet Skis, Sea-Dos, and
WaveRunners—has skyrocketed over
the past two decades. At the end of
2004, the National Marine Manu-
facturers Association estimated that near-
ly 1.5 million PWCs were in use in the
United States.5

This should come as no surprise in
light of PWC manufacturers’ marketing,
which depicts riders wake-jumping, turn-
ing sharply, and operating the vessels
close to one another at high speeds. The
four major manufacturers still making
PWCs—Bombardier (Sea-Doo), Kaw-
saki (Jet Ski), Honda (AquaTrax), and
Yamaha (WaveRunner)—target thrill-
seekers looking to have a good time on
the water.7 While highly skilled drivers
may expertly whip their watercrafts
around each other in promotional ad-
vertisements, such maneuvers—and
others much less daring—have seriously
injured and killed operators for the past
20 years.

Inadequate government response

The dangerous nature of PWCs is
not news to the industry or federal reg-
ulatory agencies. In a 1998 study, the
National Transportation Safety Board
(NTSB) found that although PWCs
constituted merely 7.4 percent of all
recreational boats in 1998, an aston-
ishing 51 percent of all reported boat-
ing accidents and 41 percent of all
boating injuries involved PWCs. The
study found a “high risk of injury asso-
ciated with PWC operations”8 and not-
ed that a significant number of PWC
accidents involve operator error and
inexperience. Almost one-third of all
operators involved in collisions had
used a PWC fewer than 10 times before
the accident.9 Moreover, the NTSB
found that close to one-fourth of PWC
accidents are linked to the hazards of
steering loss in off-throttle and off-
power situations.10

These results prompted the NTSB to

Lee Brown is a partner, and Amanda
Morse is an associate, with Brown,
Sawicki, and Mitchell in Dallas.